
 DISTRIBUTED SYSTEMS

Introduction: Definition –Relation to computer system components –Motivation –Relation to
parallel systems – Message-passing systems versus shared memory systems –Primitives for
distributed communication –Synchronous versus asynchronous executions –Design issues and
challenges. A model of distributed computations: A distributed program –A model of distributed
executions –Models of communication networks –Global state – Cuts –Past and future cones of
an event –Models of process communications. Logical Time: A framework for a system of
logical clocks –Scalar time –Vector time – Physical clock synchronization: NTP.

1. Introduction

1.2 Relation to computer system components

 Definition – Distributed Systems

 A distributed system is a system whose components are located on different networked
computers, which communicate and coordinate their actions by passing messages to one
another.

 A distributed system is a collection of independent entities that cooperate to solve a
problem that cannot be individually solved.

 Autonomous processors communicating over a communication network

Characteristics of Distributed Systems

1. No common physical clock -> “distribution” in the system and gives rise to the inherent
asynchrony amongst the processors.

2. No shared memory -> distributed system may still provide the abstraction of a common

address space via the distributed shared memory abstraction.

3. Geographical separation -> The geographically wider apart that the processors are, the
more representative is the system of a distributed system network/cluster of workstations
(NOW/COW) configuration connecting processors. The Google search engine is based on
the NOW architecture.

4. Autonomy and heterogeneity -> The processors are “loosely coupled” in that they have

different speeds and each can be running a different operating system.

Each computer has a memory-processing unit and the computers are connected by a
communication network. Figure shows the relationships of the software components that run on
each of the computers and use the local operating system and network protocol stack for
functioning.

DISTRIBUTED SYSTEMS UNIT 1

 DISTRIBUTED SYSTEMS

1.3 Motivation

The distributed software is also termed as middleware. A distributed execution is the execution
of processes across the distributed system to collaboratively achieve a common goal. An
execution is also sometimes termed a computation or a run.
A distributed system connects processors by a communication network.

Interaction of the software components at each process

 The distributed system uses a layered architecture to break down the complexity of

system design. The middleware is the distributed software that drives the distributed
system, while providing transparency of heterogeneity at the platform level.

 There are several standards such as Object Management Group’s (OMG) common object
request broker architecture (CORBA) , and the remote procedure call (RPC) mechanism

The motivation for using a distributed system is some or all of the following requirements:

1. Inherently distributed computations
The computation is inherently distributed
Eg., money transfer in banking

2. Resource sharing
Resources such as peripherals, complete data sets in databases, special libraries, as well as data
(variable/files) cannot be fully replicated at all the sites. Further, they cannot be placed at a single
site. Therefore, such resources are typically distributed across the system.
For example, distributed databases such as DB2 partition the data sets across several servers

 DISTRIBUTED SYSTEMS

1.4 Relation to parallel multiprocessor/multicomputer systems

1. Multiprocessor system
2. Multicomputer parallel system
3. Array processors

3. Access to geographically remote data and resources

In many scenarios, the data cannot be replicated at every site participating in the distributed
execution because it may be too large or too sensitive to be replicated.
For example, payroll data within a multinational corporation is both too large and too sensitive to
be replicated at every branch office/site.

4. Enhanced reliability

A distributed system has the inherent potential to provide increased reliability because of the
possibility of replicating resources and executions, as well as the reality that geographically
distributed resources are not likely to crash/malfunction at the same time under normal
circumstances. Reliability entails several aspects:

a. availability, i.e., the resource should be accessible at all times;
b. integrity, i.e., the value/state of the resource should be correct
c. fault-tolerance, i.e., the ability to recover from system failures

5. Increased performance/cost ratio

By resource sharing and accessing geographically remote data and resources, the
performance/cost ratio is increased.

6. Scalability
As the processors are usually connected by a wide-area network, adding more processors does
not pose a direct bottleneck for the communication network.

7. Modularity and incremental expandability

Heterogeneous processors may be easily added into the system without affecting the
performance, as long as those processors are running the same middleware algorithms. Similarly,
existing processors may be easily replaced by other processors.

A parallel system may be broadly classified as belonging to one of three types:

 Characteristics of parallel systems

1. A multiprocessor system is a parallel system in which the multiple processors have direct
access to shared memory which forms a common address space.

 DISTRIBUTED SYSTEMS

The architecture is shown in Figure (a). Such processors usually do not have a common clock.

A multiprocessor system usually corresponds to a uniform memory access (UMA) architecture
in which the access latency, i.e., waiting time, to complete an access to any memory location
from any processor is the same. The processors are in very close physical proximity and are
connected by an interconnection network. Inter process communication across processors is
traditionally through read and write operations on the shared memory, although the use of
message-passing primitives such as those provided by

Two standard architectures for parallel systems. (a) Uniform memory access (UMA)
multiprocessor system. (b) Non-uniform memory access (NUMA) multiprocessor. In both
architectures, the processors may locally cache data from memory.

Omega network:

Figure(1.4) shows two popular interconnection networks – the Omega network and the
Butterfly network, each of which is a multi-stage network formed of 2 ×2 switching elements.
Each 2 ×2 switch allows data on either of the two input wires to be switched to the upper or the
lower output wire.

 Each 2 × 2 switch is represented as a rectangle in the figure. Further-more, a n-input and
n-output network uses log n stages and log n bits for addressing.

 Omega interconnection function The Omega network which connects n processors to n
memory units has n/2log2 n switching elements of size 2 × 2 arranged in log2 n stages.

 DISTRIBUTED SYSTEMS

Figure(1.4) : Interconnection networks for shared memory multiprocessor systems. (a) Omega
network [4] for n = 8 processors P0–P7 and memory banks M0–M7. (b) Butterfly network [10]
for n = 8 processors P0–P7 and memory banks M0–M7.

Interconnection function: Output i of a stage connected to input j of next stage:

 Consider any stage of switches. Informally, the upper (lower) input lines for each switch
come in sequential order from the upper (lower) half of the switches in the earlier stage.

 With respect to the Omega network in Figure(a), n = 8. Hence, for any stage, for the
outputs i, where 0 ≤ i ≤ 3, the output i is connected to input 2i of the next stage. For 4 ≤ i
≤ 7, the output i of any stage is connected to input 2i + 1 − n of the next stage.

Omega routing function
 The routing function from input line i to output line j considers only j and the stage

number s, where s 0 log2n − 1. In a stage s switch, if the s + 1th MSB (most significant
bit) of j is 0, the data is routed to the upper output wire, otherwise it is routed to the lower
output wire.

 The Butterfly and the Omega networks, the paths from the different inputs to any one
output form a spanning tree. This implies that collisions will occur when data is destined
to the same output line. However, the advantage is that data can be combined at the
switches if the application semantics (e.g., summation of numbers) are known.

2. Multicomputer parallel system
A multicomputer parallel system is a parallel system in which the multiple processors do not
have direct access to shared memory. The memory of the multiple processors may or may not
form a common address space. Such computers usually do not have a common clock.

Non-uniform memory access (NUMA) architecture

 DISTRIBUTED SYSTEMS

Examples of parallel multicomputers are: the NYU Ultracomputer and the Sequent shared
memory machines, the CM* Connection machine and processors configured in regular and
symmetrical topologies such as an array or mesh, ring, torus, cube, and hypercube (message-
passing machines).

(a) Wrap-around 2D-mesh, also known as torus. (b) Hypercube of dimension 4.

Figure (a) shows a wrap-around 4 × 4 mesh. For a k × k mesh which will contain k2

processors, the maximum path length between any two processors is 2 k/2 − 1 . Routing can be
done along the Manhattan grid.
Figure (b) shows a four-dimensional hypercube. A k-dimensional hyper-cube has 2k

processor-and-memory units. Each such unit is a node in the hypercube, and has a unique k-
bit label.
Hamming distance

 The processors are labelled such that the shortest path between any two processors is the
Hamming distance (defined as the number of bit positions in which the two equal sized
bit strings differ) between the processor labels.

 Example Nodes 0101 and 1100 have a Hamming distance of 2. The shortest path between
them has length 2.

3. Array processors
 Array processors belong to a class of parallel computers that are physically co-located, are

very tightly coupled, and have a common system clock (but may not share memory and
communicate by passing data using messages).
 Array processors and systolic arrays that perform tightly synchronized processing and data

exchange in lock-step for applications such as DSP and image processing belong to this
category.
 These applications usually involve a large number of iterations on the data. This class of

parallel systems has a very niche market.

 DISTRIBUTED SYSTEMS

 Flynn’s Taxonomy

Flynn identified four processing modes, based on whether the processors execute the same or
different instruction streams at the same time, and whether or not the processors processed the
same (identical) data at the same time.

SISD: Single Instruction Stream Single Data Stream (traditional)
This mode corresponds to the conventional processing in the von Neumann paradigm with a
single CPU, and a single memory unit connected by a system bus.

SIMD: Single Instruction Stream Multiple Data Stream
This mode corresponds to the processing by multiple homogenous processors which execute in
lock-step on different data items.

o scientific applications, applications on large arrays
o vector processors, systolic arrays, Pentium/SSE, DSP chips

MISD: Multiple Instruction Stream Single Data Stream
This mode corresponds to the execution of different operations in parallel on the same data. This
is a specialized mode of operation with limited but niche applications
 E.g., visualization

MIMD: Multiple Instruction Stream Multiple Data Stream
 In this mode, the various processors execute different code on different data. This is the

mode of operation in distributed systems as well as in the vast majority of parallel systems.
 There is no common clock among the system processors.

Eg. Sun Ultra servers, multicomputer PCs, and IBM SP machines

 Coupling, parallelism, concurrency, and granularity

Coupling

 The degree of coupling among a set of modules, whether hardware or software, is
measured in terms of the interdependency and binding and/or homogeneity among the modules.

 DISTRIBUTED SYSTEMS

1.5 Message-passing vs. Shared Memory

 When the degree of coupling is high (low), the modules are said to be tightly (loosely)
coupled.

 SIMD and MISD architectures generally tend to be tightly coupled because of the
common clocking of the shared instruction stream or the shared data stream.

 Various MIMD architectures in terms of coupling:

 Tightly coupled multiprocessors (with UMA shared memory). These may be either
switch-based

 Tightly coupled multiprocessors (with NUMA shared memory or that communicate by
message passing).

 Loosely coupled multi computers (without shared memory) physically co-located. These
may be bus-based

 and the processors may be heterogeneous
 Loosely coupled multi computers (without shared memory and without common clock)

that are physically remote.

Parallelism or speedup of a program on a specific system

 This is a measure of the relative speedup of a specific program, on a given machine.
 The speedup depends on the number of processors and the mapping of the code to the

processors.
 It is expressed as the ratio of the time T(1) with a single processor, to the time T(n) with

n processors.

Parallelism within a parallel/distributed program
 This is an aggregate measure of the percentage of time that all the proces-sors are

executing CPU instructions productively, as opposed to waiting for communication (either via
shared memory or message-passing) operations to complete.
Concurrency of a program

The parallelism/concurrency in a parallel/distributed program can be measured by the ratio of
the number of local (non-communication and non-shared memory access) operations to the total
number of operations, including the communication or shared memory access operations.
Granularity of a program

 The ratio of the amount of computation to the amount of communication within the
parallel/distributed program is termed as granularity.

 Programs with fine-grained parallelism are best suited for tightly coupled systems. Eg.
SIMD and MISD architectures

 Shared memory systems are those in which there is a (common) shared address space
throughout the system.

 Communication among processors takes place via shared data variables, and control
variables for synchronization among the processors.

 DISTRIBUTED SYSTEMS

 Semaphores and monitors that were originally designed for shared memory uni
processors and multiprocessors

 The abstraction called shared memory is sometimes provided to simulate a shared address

space. For a distributed system, this abstraction is called distributed shared memory.
Implementing this abstraction has a certain cost but it simplifies the task of the
application programmer.

 The communication via message-passing can be simulated by communication via shared
memory and vice-versa. Therefore, the two paradigms are equivalent.

 Emulating message-passing on a shared memory system (MP → SM)

 Partition shared address space
 Send/Receive emulated by writing/reading from special mailbox per pair of processes
 A Pi–Pj message-passing can be emulated by a write by Pi to the mailbox and then a

read by Pj from the mailbox.
 The write and read operations need to be controlled using synchronization primitives

to inform the receiver/sender after the data has been sent/received.

 Emulating shared memory on a message-passing system (SM → MP)
 This involves the use of “send” and “receive” operations for “write” and “read”

operations.
 Model each shared object as a process
 Write to shared object emulated by sending message to owner process for the object
 Read from shared object emulated by sending query to owner of shared object
 In a MIMD message-passing multicomputer system, each “processor” may be a tightly

coupled multiprocessor system with shared memory. Within the multiprocessor system,
the processors communicate via shared memory. Between two computers, the
communication is by message passing.

 Primitives for distributed communication

 Blocking/non-blocking, synchronous/asynchronous primitives
 A Send primitive has at least two parameters – the destination, and the buffer in the

user space, containing the data to be sent.
 Similarly, a Receive primitive has at least two parameters – the source from which the

data is to be received (this could be a wildcard), and the user buffer into which the data is
to be received.

 There are two ways of sending data when the Send primitive is invoked – the buffered
option and the unbuffered option. The buffered option which is the standard option copies
the data from the user buffer to the kernel buffer. The data later gets copied from the
kernel buffer onto the network. In the unbuffered option, the data gets copied directly
from the user buffer onto the network.

 For the Receive primitive, the buffered option is usually required because the data may
already have arrived when the primitive is invoked, and needs a storage place in the
kernel.

 DISTRIBUTED SYSTEMS

Synchronous primitive(send/receive)
 Handshake between sender and receiver
 Send completes when Receive completes
 Receive completes when data copied into buffer

Asynchronous primitive (send)

 A Send primitive is said to be asynchronous if control returns back to the invoking
process after the data item to be sent has been copied out of the user-specified buffer.

Blocking primitive (send/receive)

 A primitive is blocking if control returns to the invoking process after the processing
for the primitive (whether in synchronous or asynchronous mode) completes.

Nonblocking primitive (send/receive)

 A primitive is non-blocking if control returns back to the invoking process
immediately after invocation, even though the operation has not completed.

 Send: even before data copied out of user buffer
 Receive: even before data may have arrived from sender

A non-blocking send primitive. When the Wait call returns, at least one of its parameters is
posted.

Send(X, destination, handlek) // handlek is a return parameter

Wait(handle1, handle2, …, handlek, …, handlem)

// Wait always blocks

Return parameter returns a system-generated handle
 Use later to check for status of completion of call
 Keep checking (loop or periodically) if handle has been posted
 Issue Wait(handle1, handle2, : : :) call with list of handles
 Wait call blocks until one of the stipulated handles is posted

 DISTRIBUTED SYSTEMS

Blocking/nonblocking; Synchronous/asynchronous; send/receive primities

 Processor synchrony

 Processor synchrony indicates that all the processors execute in lock-step with their
clocks synchronized.

 It is used to ensure that no processor begins executing the next step of code until all the
processors have completed executing the previous steps of code assigned to each of the
processors.

 Libraries and standards

 The message-passing interface (MPI) library and the PVM (parallel virtual machine)
library

 Commercial software is often written using the remote procedure calls (RPC)
mechanism for example, Sun RPC, and distributed computing environ-ment (DCE) RPC

 “Messaging” and “streaming” are two other mechanisms for communication, (RMI)
and remote object invocation (ROI)

 DISTRIBUTED SYSTEMS

1.7 Synchronous versus asynchronous executions

 CORBA (common object request broker architecture) and DCOM (distributed
component object model) are two other standardized architectures with their own set of
primitives

An asynchronous execution is an execution in which
 There is no processor synchrony and there is no bound on the drift rate

of processor clocks,
 Message delays (transmission + propagation times) are finite but

unbounded, and
 There is no upper bound on the time taken by a process to execute a

step.

An example of an asynchronous execution in a message-passing system. A timing diagram is
used to illustrate the execution

An example asynchronous execution with four processes P0 to P3 is shown in Figure. The
arrows denote the messages; the tail and head of an arrow mark the send and receive event for
that message, denoted by a circle and vertical line, respectively. Non-communication events, also
termed as internal events, are shown by shaded circles.

A synchronous execution is an execution in which

(i) processors are synchronized and the clock drift rate between any two processors is
bounded,

(ii) message delivery (transmission + delivery) times are such that they occur in one logical
step or round, and

(iii) there is a known upper bound on the time taken by a process to execute a step.

There is a hurdle to having a truly synchronous execution

 It is practically difficult to build a completely synchronous system, and have the
messages delivered within a bounded time.

 DISTRIBUTED SYSTEMS

 Therefore, this synchrony has to be simulated under the covers, and will inevitably
involve delaying or blocking some processes for some time durations.

 Thus, synchronous execution is an abstraction that needs to be provided to the programs.
 When implementing this abstraction, observe that the fewer the steps or

“synchronizations” of the processors, the lower the delays and costs.

Virtual Synchrony
 If processors are allowed to have an asynchronous execution for a period of time and then

they synchronize, then the granularity of the synchrony is coarse. This is really a virtually
synchronous execution, and the abstraction is sometimes termed as virtual synchrony.

 Ideally, many programs want the processes to execute a series of instructions in rounds
(also termed as steps or phases) asynchronously, with the requirement that after each
round/step/phase, all the processes should be synchronized and all messages sent should
be delivered.

 This is the commonly understood notion of a synchronous execution. Within each
round/phase/step, there may be a finite and bounded number of sequential sub-rounds (or
sub-phases or sub-steps) that processes execute. Each sub-round is assumed to send at
most one message per process; hence the message(s) sent will reach in a single message
hop.

An example of a synchronous execution in a message-passing system. All the messages sent in a
round are received within that same round.

In this system, there are four nodes P0 to P3. In each round, process Pi sends a message to P i+1

mod 4 and P i−1 mod 4 and calculates some application-specific function on the received values.

Synchronous execution in a message-passing system
In any round/step/phase: (send j internal) (receive j internal)

 DISTRIBUTED SYSTEMS

Difficult to build a truly synchronous system; can simulate this abstraction
Virtual synchrony:

 async execution, processes synchronize as per application requirement;
 execute in rounds/steps

Emulations:
 Async program on sync system: trivial (A is special case of S)
 Sync program on async system: tool called synchronizer

System Emulations

 The shared memory system could be emulated by a message-passing system, and vice-
versa

 If system A can be emulated by system B, denoted A/B, and if a problem is not solvable
in B, then it is also not solvable in A. Likewise, if a problem is solvable in A, it is also solvable
in B. Hence, in a sense, all four classes are equivalent in terms of “computability” – what can
and cannot be computed – in failure-free systems.
Emulations among the principal system classes in a failure-free system.

Assumption: failure-free system
System A emulated by system B:

 If not solvable in B, not solvable in A

 Sync vs async executions
Async execution
 No processor synchrony, no bound on drift rate of clocks
 Message delays nite but unbounded
 No bound on time for a step at a process
Sync execution
 Processors are synchronized; clock drift rate bounded
 Message delivery occurs in one logical step/round
 Known upper bound on time to execute a step at a process

 DISTRIBUTED SYSTEMS

1.8 Design issues and challenges

Distributed systems challenges from a system perspective
Algorithmic challenges in distributed computing
Applications of distributed computing and newer challenges

1.8.1 Distributed systems challenges from a system perspective

 If solvable in A, solvable in B

The categorization of design issues and challengesm as (i) having a greater component related to
systems design and operating systems design, or (ii) having a greater component related to
algorithm design, or (iii) emerging from recent technology advances and/or driven by new
applications.

The following functions must be addressed when designing and building a distributed system:

Communication mechanisms: E.g., Remote Procedure Call (RPC), remote object invocation
(ROI), message-oriented vs. stream-oriented communication
Processes: Code migration, process/thread management at clients and servers, design of
software and mobile agents
Naming: Easy to use identifiers needed to locate resources and processes transparently and
scalable.
Synchronization
Mechanisms for synchronization or coordination among the processes are essential. Mutual
exclusion is the classical example of synchronization
Data storage and access

 Schemes for data storage, search, and lookup should be fast and scalable across
network

 Revisit file system design
Consistency and replication

 Replication for fast access, scalability, avoid bottlenecks
 Require consistency management among replicas
 Fault-tolerance: correct and efficient operation despite link, node, process failures

Distributed systems security

 Secure channels, access control, key management (key generation and key
distribution), authorization, secure group management

 Scalability and modularity of algorithms, data, services Some experimental systems:
Globe, Globus, Grid

 DISTRIBUTED SYSTEMS

1.8.2 Algorithmic challenges in distributed computing

API for communications, services: ease of use
Transparency: hiding implementation policies from user

 Access: hide di erences in data rep across systems, provide uniform operations to
access resources

 Location: locations of resources are transparent
 Migration: relocate resources without renaming
 Relocation: relocate resources as they are being accessed
 Replication: hide replication from the users
 Concurrency: mask the use of shared resources
 Failure: reliable and fault-tolerant operation

Scalability and modularity
 Various techniques such as replication, caching and cache management, and

asynchronous processing help to achieve scalability.

Useful execution models and frameworks: to reason with and design correct distributed
programs

 Interleaving model
 Partial order model
 Input/Output automata
 Temporal Logic of Actions

Dynamic distributed graph algorithms and routing algorithms
 System topology: distributed graph, with only local neighborhood knowledge
 Graph algorithms: building blocks for group communication, data dissemination,

object location
 Algorithms need to deal with dynamically changing graphs
 Algorithm e ciency: also impacts resource consumption, latency, tra c, congestion

Time and global state
 The processes in the system are spread across three-dimensional physical space.

Another dimension, time, has to be superimposed uniformly across space.
 The challenges pertain to providing accurate physical time, and to providing a variant

of time, called logical time
 Logical time captures inter-process dependencies and tracks relative time progression
 Global state observation: inherent distributed nature of system
 Concurrency measures: concurrency depends on program logic, execution speeds

within logical threads, communication speeds
Synchronization/coordination mechanisms

Some examples of problems requiring synchronization:
 Physical clock synchronization: hardware drift needs correction
 Leader election: select a distinguished process, due to inherent symmetry
 Mutual exclusion: coordinate access to critical resources

 DISTRIBUTED SYSTEMS

 Distributed deadlock detection and resolution: need to observe global state; avoid
duplicate detection, unnecessary aborts

 Termination detection: global state of quiescence; no CPU processing and no in-transit
messages

 Garbage collection: Reclaim objects no longer pointed to by any process
Group communication, multicast, and ordered message delivery

 A group is a collection of processes that share a common context and collab-orate on a
common task within an application domain.

 Multiple joins, leaves, fails
 Concurrent sends: semantics of delivery order

Monitoring distributed events and predicates
 Predicate: condition on global system state
 An important paradigm for monitoring distributed events is that of event streaming,

wherein streams of relevant events reported from different processes are examined
collectively to detect predicates.

Distributed program design and verification tools
 Methodically designed and verifiably correct programs can greatly reduce the

overhead of software design, debugging, and engineering.
Debugging distributed programs

 Debugging sequential programs is hard; debugging distributed programs is that much
harder because of the concurrency in actions

Data replication, consistency models, and caching

 Fast, scalable access;
 coordinate replica updates;
 optimize replica placement

World Wide Web design: caching, searching, scheduling
 Global scale distributed system; end-users
 Read-intensive; prefetching over caching
 Object search and navigation are resource-intensive
 User-perceived latency

Distributed shared memory abstraction
 Wait-free algorithm design: process completes execution, irrespective of

o actions of other processes, i.e., n - 1 fault-resilience
 Mutual exclusion
 Bakery algorithm, semaphores, based on atomic hardware primitives, fast

algorithms when contention-free access
 Register constructions
 Revisit assumptions about memory access

Consistency models:
 For multiple copies of a variable/object, varying degrees of consistency among the

replicas can be allowed.
 These represent a trade-off of coherence versus cost of implementation.

 DISTRIBUTED SYSTEMS

1.8.3 Applications of distributed computing and newer challenges

 Weaker models than strict consistency of uniprocessors
Reliable and fault-tolerant distributed systems
Consensus algorithms: processes reach agreement in spite of faults (under various fault models)

Replication and replica management

Replication (as in having backup servers) is a classical method of providing fault-tolerance. The
triple modular redundancy (TMR) technique has long been used in software as well as hardware
installations.

 Voting and quorum systems
 Distributed databases, commit: ACID properties
 Self-stabilizing systems: "illegal" system state changes to "legal" state; requires built-

in redundancy
 Check pointing and recovery algorithms: roll back and restart from earlier "saved"

state
 Failure detectors:
 Difficult to distinguish a "slow" process/message from a failed process/ never sent

message algorithms that "suspect" a process as having failed and converge on a
determination of its up/down status

Load balancing: to reduce latency, increase throughput, dynamically. E.g., server farms

 Computation migration: relocate processes to redistribute workload
 Data migration: move data, based on access patterns
 Distributed scheduling: across processors

Real-time scheduling: difficult without global view, network delays make task harder

Performance modeling and analysis: Network latency to access resources must be reduced
 Metrics: theoretical measures for algorithms, practical measures for systems
 Measurement methodologies and tools

Mobile systems
 Wireless communication: unit disk model; broadcast medium (MAC), power

management etc.
 CS perspective: routing, location management, channel allocation, localization and

position estimation, mobility management
 Base station model (cellular model)
 Ad-hoc network model (rich in distributed graph theory problems)

Sensor networks: Processor with electro-mechanical interface Ubiquitous or pervasive
computing

 Processors embedded in and seamlessly pervading environment

 DISTRIBUTED SYSTEMS

1.9 A Model of Distributed Computations

1.10 A Model of Distributed Executions

 Wireless sensor and actuator mechanisms; self-organizing; network-centric, resource-
constrained

 E.g., intelligent home, smart workplace
 Peer-to-peer computing
 No hierarchy; symmetric role; self-organizing; efficient object storage and lookup;

scalable; dynamic reconfiguration
 all processors are equal and play a symmetric role in the computation.

Publish/subscribe, content distribution
 Filtering information to extract that of interest

Distributed agents
 Processes that move and cooperate to perform specific tasks; coordination, controlling

mobility, software design and interfaces
Distributed data mining

 Extract patterns/trends of interest
 Data not available in a single repository

Grid computing
 Grid of shared computing resources; use idle CPU cycles
 Issues: scheduling, QOS guarantees, security of machines and jobs

Security
 Confidentiality, authentication, availability in a distributed setting
 Manage wireless, peer-to-peer, grid environments
 Issues: e.g., Lack of trust, broadcast media, resource-constrained, lack of structure

 A Distributed Program
 A distributed program is composed of a set of n asynchronous processes, p1, p2, ..., pi , ..., pn.
 The processes do not share a global memory and communicate solely by passing messages.
 The processes do not share a global clock that is instantaneously accessible to these processes.
 Process execution and message transfer are asynchronous.
 Withoutlossofgenerality, we assumethat each processisrunning ona different processor.
 Let Cij denote the channel from process pi to process pj and let mij denote a message sent by

pi to pj .
 The message transmission delay is finite and unpredictable.

 The execution of a process consists of a sequential execution of its actions.
 The actions are atomic and the actions of a process are modeled as three types of

events, namely, internal events, message send events, and message receive events.
i Let ex denote the x th event at process pi . For a message m, let send (m) and rec(m)

 DISTRIBUTED SYSTEMS

denoteitssendandreceiveevents, respectively.
 The occurrence of events changes the states of respective processes and channels. An

internal event changes the state of the process at which it occurs. A send event
changes the state of the process that sends the message and the state of the channel on
which the message is sent. A receive event changes the state of the process that receives
the message and the state of the channel on which the message is received. The send
and the receive events signify the flow of information between processes and establish
causal dependency from the sender process to the receiver process.

 A relation →msg that captures the causal dependency due to message exchange, is
defined as follows. For every message m that is exchanged between two processes, we
have send (m) →msg rec (m).

 Relation →msg defines causal dependencies between the pairs of corresponding send
and receive events.

 The evolution of a distributed execution is depicted by a space-time diagram.
 A horizontal line represents the progress of the process; a dot indicates an event; a slant

arrow indicates a message transfer.
 Since we assume that an event execution is atomic (hence, indivisible and

instantaneous), it is justified to denote it as a dot on a process line.
 In the Figure, for process p1, the second event is a message send event, the third event is

an internal event, and the fourth event is a message receive event.

Figure : The space-time diagram of a distributed execution.

Causal Precedence Relation

 The execution of a distributed application results in a set of distributed events produced by
the processes.

 Let H=ৣi hi denote the set of events executed in a distributed computation.
 Define a binary relation → on the set H as follows that expresses causal dependencies

between events in the distributed execution.

 DISTRIBUTED SYSTEMS

The causal precedence relation induces an irreflexive partial order on the events of a distributed
computation that is denoted as H=(H, →).

 Note that the relation → is nothing but Lamport’s “happens before” relation.
 For any two events ei and ej , if ei → ej , then event ej is directly or transitively dependent

on event ei . (Graphically, it means that there exists a path consisting of message arrows and
process-line segments (along increasing time) in the space-time diagram that starts at ei and
ends at ej.)

 The relation → denotes flow of information in a distributed computation and ei → ej

dictates that all the information available at ei is potentially accessible at ej .
 For example, i2n Figure 2.1, event e2

6 has the knowledge of all other events shown in the
figure.

Note the following two rules:

Concurrent Events

Logical vs. Physical Concurrency

 In a distributed computation, two events are logically concurrent if and only if they do not
causally affect each other.

 Physical concurrency, on the other hand, has a connotation that the events occur at the same

 DISTRIBUTED SYSTEMS

1.11 Models of communication networks

1.12 Global State of a Distributed System

instant in physical time.
 Two or more events may be logically concurrent even though they do not occur at the same

instant in physical time.
 However, if processor speed and message delays would have been different, the

execution of these events could have very well coincided in physical time.
 Whether a set of logically concurrent events coincide in the physical time or not, does not

change the outcome of the computation.
 Therefore, eventhougha set oflogicallyconcurrent eventsmaynothave occurred at the same

instant in physical time, we can assume that these events occured at the same instant in
physical time.

 There are several models of the service provided by communication networks, namely, FIFO,
Non-FIFO, and causal ordering.

 In the FIFO model, each channel acts as a first-in first-out message queue and thus, message
ordering is preserved by achannel.

 In the non-FIFO model, a channel acts like a set in which the sender process adds messages
and the receiver process removes messages from it in a random order.

 The“causalordering” modelisbased on Lamport’s “happens before” relation.
 A system that supports the causal ordering model satisfies the following property:

CO: For any two messages mij and mkj ,if send (mij)→send (mkj), then rec (mij) → rec (mkj).
 This property ensures that causally related messages destined to the same destination are

delivered in an order that is consistent with their causality relation.
 Causally ordered delivery of messages implies FIFO message delivery. (Note that CO

 FIFO Non-FIFO.)
 Causal ordering model considerably simplifies the design of distributed algorithms

because it provides a built-in synchronization.

“The global state of a distributed system is a collection of the local states of its components,
namely, the processes and the communication channels.”

 The state of a process is defined by the contents of processor registers, stacks, local
memory, etc. and depends on the local context of the distributed application.

 The state of channel is given by the set of messages in transit in the channel.
 The occurrence of events changes the states of respective processes and channels.
 An internal event changes the state of the process at which it occurs.
 A send event changes the state of the process that sends the message and the state of the

channel on which the message is sent.
 A receive event changes the state of the process that or receives the message and the state

of the channel on which the message is received.

 DISTRIBUTED SYSTEMS

A Consistent Global State

 Even if the state of all the components is not recorded at the same instant, such a state will be
meaningfulprovidedeverymessagethatisrecordedas received is also recorded as sent.

 Basic idea is that a state should not violate causality – an effect should not be present
without its cause. Amessagecannotbe receivedifitwasnotsent.

 Such states are called consistent global states and are meaningful global states.

An Example
Consider the distributed execution of Figure

 DISTRIBUTED SYSTEMS

1.13 Cuts of a Distributed Computation

“In the space-time diagram of a distributed computation, a cut is a zigzag line joining one arbitrary
point on each process line.”

 A cut slices the space-time diagram, and thus the set of events in the distributed
computation, into a PAST and a FUTURE.

 The PAST contains all the events to the left of the cut and the FUTURE contains all the
events to the right of the cut.

 For a cut C , let PAST(C) and FUTURE(C) denote the set of events in the PAST and
FUTURE of C , respectively.

 Every cut corresponds to a global state and every global state can be graphically
represented as a cut in the computation’s space-time diagram.

 Cuts in a space-time diagram provide a powerful graphical aid in representing and
reasoning about global states of a computation.

Figure: Illustration of cuts in a distributed execution.

 In a consistent cut, every message received in the PAST of the cut was sent in the PAST of

 DISTRIBUTED SYSTEMS

1.14 Past and Future Cones of an Event

that cut. (In Figure, cut C2 is a consistent cut.)
 All messages that cross the cut from the PAST to the FUTURE are in transit in the

corresponding consistent global state.
 A cut is inconsistent if a message crosses the cut from the FUTURE to the PAST. (In Figure,

cut C1 is an inconsistent cut.)

Past Cone of an Event

 An event ej could have been affected only by all events ei such that ei → ej .
 In this situtaion, all the information available at ei could be made accessible at ej .
 All such events ei belong to the past of ej .

Let Past(ej) denote all events in the past of ej in a computation (H, →). Then,

Past(ej) = {ei |∀ei H, ei → ej }.

Figure: Illustration of past and future cones.

 Let Pasti (ej) be the set of all those events of Past(ej) that are on process pi .
 Pasti (ej) is a totally ordered set, ordered by the relation →i , whose maximal element is

denoted by max(Pasti (ej)).
 max(Pasti(ej)) is the latest event at process pi that affected event ej

Future cone of an Event

 DISTRIBUTED SYSTEMS

1.15 Models of Process Communications

1.16 Logical Time

 There are two of basic models process communications – synchronous and asynchronous.
 The synchronous communication model is a blocking type where on a message send, the

sender process blocks until the message has been received by the receiver process. The sender
process resumes execution only after it learns that the receiver process has accepted the
message.

 Thus, the sender and the receiver processes must synchronize to exchange a message. On
the other hand, asynchronous communication model is a non-blocking type where the sender
and the receiver do not synchronize to exchange a message.

 After having sent a message, the sender process does not wait for the message to be delivered
to the receiver process. The message is buffered by the system and is delivered to the receiver
process when it is ready to accept the message. Neither of the communication models is
superior to the other.

 Asynchronous communication provides higher parallelism because the sender process
can execute while the message is in transit to the receiver.

 However, A buffer overflow may occur if a process sends a large number of messages in
a burst to another process. Thus, an implementation of asynchronous communication
requires more complex buffer management.

 In addition, due to higher degree of parallelism and non-determinism, it is much more
difficult to design, verify, and implement distributed algorithms for asynchronous
communications.

 Synchronous communication is simpler to handle and implement.
 However, due to frequent blocking, it is likely to have poor performance and is likely to be

more prone to deadlocks.

Introduction

 DISTRIBUTED SYSTEMS

1.17 A Framework for a System of Logical Clocks

 The concept of causality between events is fundamental to the design and analysis of parallel
and distributed computing and operating systems.

 Usually causality is tracked using physical time.
 In distributed systems, it is not possible to have a global physical time.
 As asynchronous distributed computations make progress in spurts, the logical time is

sufficient to capture the fundamental monotonicity property associated with causality in
distributed systems.

 This chapter discusses three ways to implement logical time - scalar time, vector time, and
matrix time.

 Causalityamongevents in adistributed system is apowerful concept in reasoning, analyzing,
and drawing inferences about a computation.

 The knowledge of the causal precedence relation among the events of processes helps
solve a variety of problems in distributed systems, such as distributed algorithms design,
tracking of dependent events, knowledge about the progress of a computation, and
concurrencymeasures.

 Definition
 A system of logical clocks consists of a time domain T and a logical clock C .

Elements of T form a partially ordered set over a relation <.
 Relation < is called the happened before or causal precedence. Intuitively, this

relation is analogous to the earlier than relation provided by the physical time.
 The logical clock C is a function that maps an event e in a distributed system to an

element in the time domain T, denoted as C(e) and called the timestamp of e, and is
defined as follows:

C : H → T
such that the following property is satisfied:

for two events ei and ej , ei → ej =⇒ C(ei) < C(ej).
This monotonicity property is called the clock consistency condition. When T and C
satisfy the following condition,

 for two events ei and ej , ei → ej ⇔ C(ei) < C(ej)
the system of clocks is said to be strongly consistent.

 Implementing Logical Clocks
 Implementation of logical clocks requires addressing two issues: data structures local to

every process to represent logical time and a protocol to update the data structures to ensure
the consistency condition.

 Each process pi maintains data structures that allow it the following two capabilities:
A local logical clock, denoted by lci , that helps process pi measure its own progress.

 DISTRIBUTED SYSTEMS

R1: This rule governs how the local logical clock is updated by a process when it executes an
event.
R2: This rule governs how a process updates its global logical clock to update its view of the
global time and global progress.

1. Ci := max (Ci , Cmsg)
2. Execute R1.
3. Deliver the message.

R1: Before executing an event (send, receive, or internal), process pi executes the following:
Ci := Ci + d (d > 0) In general, every time R1 is executed, d can have a different value;
however, typically d is kept at 1.
R2: Each message piggybacks the clock value of its sender at sending time. When a process pi
receives a message with timestamp Cmsg , it executes the following actions:

 The protocol ensures that a process’s logical clock, and thus its view of the global time, is

managed consistently. The protocol consists of the following two rules:

 Systems oflogical clocks differ in their representation of logicaltime and also in the protocol
to update the logical clocks.

 The scalar time representation was proposed by Lamport in 1978 [9] as an attempt to

totally order events in a distributed system. Time domain in this representation is the set
of non-negative integers.

 The logical local clock of a process pi and its local view of the global time are squashed into
one integer variable Ci .

 Rules R1 and R2 to update the clocks are as follows:

 Figure shows evolution of scalar time.
Evolution of scalar time:
Figure : The space-time diagram of a distributed execution.

Basic Properties

Consistency Property
Scalar clocks satisfy the monotonicity and hence the consistency property: for two events ei and ej ,
ei → ej =⇒ C(ei) < C(ej).
Total Ordering

1.18 Scalar Time

A logical global clock, denoted by gci , that is a representation of process pi ’s local view of
the logical global time. Typically, lci is a part of gci .

 DISTRIBUTED SYSTEMS

1.19 Vector Time

 Scalar clocks can be used to totally order events in a distributed system.
 The main problem in totally ordering events is that two or more events at different processes

may have identical timestamp.
 For example in Figure, the third event of process P1 and the second event of process P2 have

identical scalar timestamp.
 Atie-breakingmechanismisneededtoordersuch events. Atieisbrokenas follows:

 Process identifiers are linearly ordered and tie among events with identical scalar
timestamp is broken on the basis of their process identifiers.

 The lower the process identifier in the ranking, the higher the priority.
 The timestamp of an event is denoted by a tuple (t, i) where t is its time of occurrence and i

is the identity of the process where it occurred.

Event counting
 If the increment value d is always 1, the scalar time has the following interesting

property: if event e has a timestamp h, then h-1 represents the minimum logical duration,
counted in units of events, required before producing the event e;

 We call it the height of the event e.
 In otherwords, h-1 events havebeenproducedsequentiallybeforetheevent e

regardless of the processes that produced these events.
For example, in Figure, five events precede event b on the longest causal path ending at b.

No Strong Consistency

 For example, in Figure, the third event of process P1 has smaller scalar timestamp than the
third event of process P2. However, the former did not happen before the latter.

 The reason that scalar clocks are not strongly consistent is that the logical local clock and
logical global clock of a process are squashed into one, resulting in the loss causal
dependency information among events at different processes.

 For example, in Figure, when process P2 receives the first message from process P1, it
updates its clock to 3, forgetting that the timestamp of the latest event at P1 on which it
depends is 2.

 The system of vector clocks was developed independently by Fidge, Mattern and Schmuck.
 In the system of vector clocks, the time domain is represented by a set of

n-dimensional non-negative integer vectors.
 Each process pi maintains a vector vti [1..n], where vti [i] is the local logical clock of pi and

 DISTRIBUTED SYSTEMS

R1: Before executing an event, process pi updatesitslocallogicaltimeas follows:
vti [i] := vti [i] + d (d > 0)
R2: Each message m is piggybacked with the vector clock vt of the sender process at sending
time. On the receipt of such a message (m,vt), process pi executes the following sequence of
actions:

describes the logical time progress at process pi .
vti [j] represents process pi ’s latest knowledge of process pj local time.
If vti [j]=x, then process pi knows that local time at process pj has progressed till x .
The entire vector vti constitutes pi’s view of the global logical time and is used to timestamp
events.

 Process pi uses the following two rules R1 and R2 to update its clock:

1. Update its global logical time as follows:
1 ≤ k ≤ n : vti [k] := max (vti [k], vt[k])

2. Execute R1.
3. Deliver the message m.

The timestamp of an event is the value of the vector clock of its process when the event is executed.
Figure shows an example of vector clocks progress with the increment value d=1.
Initially, a vector clock is [0,0,0, , 0].
An Example of Vector Clocks

Comparing Vector Timestamps
The following relations are defined to compare two vector timestamps, vh
and vk :

If the process at which an event occurred is known, the test to compare two timestamps can be
simplified as follows: If events x and y respectively occurred at processes pi and pj and are
assigned timestamps vh and vk, respectively, then

 DISTRIBUTED SYSTEMS

Basic Properties of Vector Time
Isomorphism

 If events in a distributed system are time stamped using a system of vector clocks, we have
the following property.

 If two events x and y have timestamps vh and vk, respectively, then

x → y ⇔ vh < vk x ǁ y⇔ vh ǁ vk.

 Thus, there is an isomorphism between the set of partially ordered events produced by a
distributed computation and their vector timestamps

Strong Consistency
 The system of vector clocks is strongly consistent; thus, by examining the vector timestamp

of twoevents, we can determineiftheeventsare causally related.
 However, Charron-Bost showed that the dimension of vector clocks cannot be less than

n, the total number of processes in the distributed computation, for this property to hold.
Event Counting

 If d=1 (in rule R1), then the i th component of vector clock at process pi , vti [i], denotes the
number of events that have occurred at pi until that instant.

 So, if an event e has timestamp vh,
vh[j] denotes the number of events executed by process pj that causally precede e.
Clearly, vh[j] – 1 represents the total number of events that causally precede e in the
distributed computation.

Applications

 Distributed debugging,
 Implementations of causal ordering,
 Communication and causal distributed shared memory,
 Establishment of global breakpoints
 Determining the consistency of checkpoints in optimistic recovery

Size of vector clocks
A linear extension of a partial order E is a linear ordering of E that is consistent with the partial
order, i.e., if two events are ordered in the partial order, they are also ordered in the linear order.
A linear extension can be viewed as projecting all the events from the different processes on a
single time axis. However, the linear order will necessarily introduce ordering between each pair
of events, and some of these orderings are not in the partial order.
Now consider an execution on processes P1 and P2 such that each sends a message to the other
before receiving the other’s message. The two send events are concurrent, as are the two receive
events. To determine the causality between the send events or between the receive events, it is not
sufficient to use a single integer; a vector clock of size n = 2 is necessary. This execution exhibits
the graphical property called a crown, wherein there are some messages m0 mn−1 such that

 DISTRIBUTED SYSTEMS

Send mi < Receive mi+1 mod n−1 for all i from 0 to n − 1. A crown of n messages has dimension
n

Dimension of a execution For n = 4 processes, the dimension is 2.

Motivation
In centralized systems, there is only single clock. A process gets the time by simply issuing a system
call to the kernel. In distributed systems, there is no global clock or common memory. Each
processor has its own internal clock and its own notion of time. These clocks can easily drift
seconds per day, accumulating significant errors over time. Also, because different clocks tick at
different rates, they may not remain always synchronized although they might be synchronized
when they start. This clearly poses serious problems to applications that depend on a
synchronized notion of time.
For most applications and algorithms that run in a distributed system, we need to know time in
one or more of the following contexts:

 The time of the day at which an event happened on a specific machine in the network.
 The time interval between two events that happened on different machines in the

network.
 The relative ordering of events that happened on different machines in the network.

Unless the clocks in each machine have a common notion of time, time-based queries cannot
be answered. Clock synchronization has a significant effect on many problems like secure
systems, fault diagnosis and recovery, scheduled operations, database systems, and real-
world clock values.
 Clock synchronization is the process of ensuring that physically distributed processors

have a common notion of time.
 Due to different clocks rates, the clocks at various sites may diverge with time and

periodically a clock synchronization must be performed to correct this clock skew in
distributed systems.

 Clocks are synchronized to an accurate real-time standard like UTC (Universal
Coordinated Time).

Clocks that must not only be synchronized with each other but also have to adhere to physical time
are termed physical clocks.

1.20 Physical Clock Synchronization: NTP

 DISTRIBUTED SYSTEMS

Clock Inaccuracies
Physical clocks are synchronized to an accurate real-time standard like UTC (Universal
Coordinated Time).
However, duetotheclockinaccuracydiscussedabove, a timer(clock) is said to be working within its
specification if (where constant ρ is the maximum skew rate specified by the manufacturer.)

Figure illustrates the behavior of fast, slow, andperfect clockswith respect to UTC.

Offset delay estimation method
The Network Time Protocol (NTP) which is widely used for clock synchronizationonthe Internet
usesthe Offset Delay Estimation method.
The design of NTP involves a hierarchical tree of time servers.

 The primary server at the root synchronizes with the UTC.
 The next level contains secondary servers, which act as a backup to the primary

server.
 At the lowest level is the synchronization subnet which has the clients.

 DISTRIBUTED SYSTEMS

Clock offset and delay estimation:
In practice, a source node cannot accurately estimate the local time on the target node due to varying
message or network delays between the nodes. This protocol employs a common practice of
performing several trials and chooses the trial with the minimum delay.
Figure shows how NTP timestamps are numbered and exchanged between peers A and B.
Let T1,T2,T3,T4 be the values of the four most recent timestamps as shown. Assume clocks A and B
are stable and running at the same speed.

Offset and delay estimation.

Each NTP message includes the latest three timestamps T1, T2 and T3, while T4 is determined upon
arrival. Thus, both peers A and B can independently calculate delay and offset using a single
bidirectional message stream as shown in Figure.

 DISTRIBUTED SYSTEMS

QUESTIONS:

1. Define distributed system. Listout the characteristics of distributed systems. How
to relate the computer system components in distributed environment. (1.1 & 1.2)

2. Describe the motivations of implementing distributed systems. (1.3)
3. Describe the parallel systems with examples. (1.4)
4. Differentiate message passing and shared memory and how they emulate (1.5)
5. Describe the primitives of distributed computing (1.6)
6. Differentiate sync and async execution with example. (1.7)
7. Explain the Design issues and challenges of distributed computing. (1.8)
8. Discuss the model of distributed execution. (1.10)
9. Explain global states with example. (1.12)
10. What is cut and past, future cones of an event in distributed systems (1.13 &1.14)
11. Explain Logical clocks with example.(1.16 &1.17)
12. Discuss scalar time and its properties. (1.18)
13. Discuss Vector time(1.19)
14. Explain physical clock synchronization with example (1.20)

