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1. Introduction 

1.2 Relation to computer system components 

 

 
 

 

 

 Definition – Distributed Systems  
 

 A distributed system is a system whose components are located on different networked 
computers, which communicate and coordinate their actions by passing messages to one 
another. 

 A distributed system is a collection of independent entities that cooperate to solve a 
problem that cannot be individually solved. 

 Autonomous processors communicating over a communication network 
 

Characteristics of Distributed Systems 
 

1. No common physical clock -> “distribution” in the system and gives rise to the inherent 
asynchrony amongst the processors. 

 
2. No shared memory -> distributed system may still provide the abstraction of a common 

address space via the distributed shared memory abstraction. 
 

3. Geographical separation -> The geographically wider apart that the processors are, the 
more representative is the system of a distributed system network/cluster of workstations 
(NOW/COW) configuration connecting processors. The Google search engine is based on 
the NOW architecture. 

 
4. Autonomy and heterogeneity -> The processors are “loosely coupled” in that they have 

different speeds and each can be running a different operating system. 
 

 

Each computer has a memory-processing unit and the computers are connected by a 
communication network. Figure shows the relationships of the software components that run on 
each of the computers and use the local operating system and network protocol stack for 
functioning. 
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1.3 Motivation 

The distributed software is also termed as middleware. A distributed execution is the execution 
of processes across the distributed system to collaboratively achieve a common goal. An 
execution is also sometimes termed a computation or a run. 
A distributed system connects processors by a communication network. 

 

Interaction of the software components at each process 
 

 
 The distributed system uses a layered architecture to break down the complexity of 

system design. The middleware is the distributed software that drives the distributed 
system, while providing transparency of heterogeneity at the platform level. 

 There are several standards such as Object Management Group’s (OMG) common object 
request broker architecture (CORBA) , and the remote procedure call (RPC) mechanism 

 

 

The motivation for using a distributed system is some or all of the following requirements: 

1. Inherently distributed computations 
The computation is inherently distributed 
Eg., money transfer in banking 

2. Resource sharing 
Resources such as peripherals, complete data sets in databases, special libraries, as well as data 
(variable/files) cannot be fully replicated at all the sites. Further, they cannot be placed at a single 
site. Therefore, such resources are typically distributed across the system. 
For example, distributed databases such as DB2 partition the data sets across several servers 
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1.4 Relation to parallel multiprocessor/multicomputer systems 

1. Multiprocessor system 
2. Multicomputer parallel system 
3. Array processors 

 
3. Access to geographically remote data and resources 

 
In many scenarios, the data cannot be replicated at every site participating in the distributed 
execution because it may be too large or too sensitive to be replicated. 
For example, payroll data within a multinational corporation is both too large and too sensitive to 
be replicated at every branch office/site. 

 
4. Enhanced reliability 

A distributed system has the inherent potential to provide increased reliability because of the 
possibility of replicating resources and executions, as well as the reality that geographically 
distributed resources are not likely to crash/malfunction at the same time under normal 
circumstances. Reliability entails several aspects: 

a. availability, i.e., the resource should be accessible at all times; 
b. integrity, i.e., the value/state of the resource should be correct 
c. fault-tolerance, i.e., the ability to recover from system failures 

 
5. Increased performance/cost ratio 

By resource sharing and accessing geographically remote data and resources, the 
performance/cost ratio is increased. 

6. Scalability 
As the processors are usually connected by a wide-area network, adding more processors does 
not pose a direct bottleneck for the communication network. 

 
7. Modularity and incremental expandability 

 
Heterogeneous processors may be easily added into the system without affecting the 
performance, as long as those processors are running the same middleware algorithms. Similarly, 
existing processors may be easily replaced by other processors. 

 

 

A parallel system may be broadly classified as belonging to one of three types: 
 

 

 Characteristics of parallel systems 
 

1. A multiprocessor system is a parallel system in which the multiple processors have direct 
access to shared memory which forms a common address space. 



   DISTRIBUTED SYSTEMS 
 

The architecture is shown in Figure (a). Such processors usually do not have a common clock. 
 

A multiprocessor system usually corresponds to a uniform   memory access (UMA) architecture 
in which the access latency, i.e., waiting time, to complete an access to any memory location 
from any processor is the same. The processors are in very close physical proximity and are 
connected by an interconnection network. Inter process communication across processors is 
traditionally through read and write operations on the shared memory, although the use of 
message-passing primitives such as those provided by 

 
Two standard architectures for parallel systems. (a) Uniform memory access (UMA) 
multiprocessor system. (b) Non-uniform memory access (NUMA) multiprocessor. In both 
architectures, the processors may locally cache data from memory. 

 

 
Omega network: 

Figure(1.4) shows two popular interconnection networks – the Omega network and the 
Butterfly network, each of which is a multi-stage network formed of 2 ×2 switching elements. 
Each 2 ×2 switch allows data on either of the two input wires to be switched to the upper or the 
lower output wire. 

 Each 2 × 2 switch is represented as a rectangle in the figure. Further-more, a n-input and 
n-output network uses log n stages and log n bits for addressing. 

 Omega interconnection function The Omega network which connects n processors to n 
memory units has n/2log2 n switching elements of size 2 × 2 arranged in log2 n stages. 
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Figure(1.4) : Interconnection networks for shared memory multiprocessor systems. (a) Omega 
network [4] for n = 8 processors P0–P7 and memory banks M0–M7. (b) Butterfly network [10] 
for n = 8 processors P0–P7 and memory banks M0–M7. 

 
Interconnection function: Output i of a stage connected to input j of next stage: 

 

 Consider any stage of switches. Informally, the upper (lower) input lines for each switch 
come in sequential order from the upper (lower) half of the switches in the earlier stage. 

 With respect to the Omega network in Figure(a), n = 8. Hence, for any stage, for the 
outputs i, where 0 ≤ i ≤ 3, the output i is connected to input 2i of the next stage. For 4 ≤ i 
≤ 7, the output i of any stage is connected to input 2i + 1 − n of the next stage. 

Omega routing function 
 The routing function from input line i to output line j considers only j and the stage 

number s, where s 0 log2n − 1. In a stage s switch, if the s + 1th MSB (most significant 
bit) of j is 0, the data is routed to the upper output wire, otherwise it is routed to the lower 
output wire. 

 The Butterfly and the Omega networks, the paths from the different inputs to any one 
output form a spanning tree. This implies that collisions will occur when data is destined 
to the same output line. However, the advantage is that data can be combined at the 
switches if the application semantics (e.g., summation of numbers) are known. 

 
2. Multicomputer parallel system 
A multicomputer parallel system is a parallel system in which the multiple processors do not 
have direct access to shared memory. The memory of the multiple processors may or may not 
form a common address space. Such computers usually do not have a common clock. 

 
Non-uniform memory access (NUMA) architecture 



   DISTRIBUTED SYSTEMS 
 

 
Examples of parallel multicomputers are: the NYU Ultracomputer and the Sequent shared 
memory machines, the CM* Connection machine and processors configured in regular and 
symmetrical topologies such as an array or mesh, ring, torus, cube, and hypercube (message- 
passing machines). 

 
(a) Wrap-around 2D-mesh, also known as torus. (b) Hypercube of dimension 4. 

 
 

 
Figure (a) shows a wrap-around 4 × 4 mesh. For a k × k mesh which will contain k2 

processors, the maximum path length between any two processors is 2 k/2 − 1 . Routing can be 
done along the Manhattan grid. 
Figure (b) shows a four-dimensional hypercube. A k-dimensional hyper-cube has 2k 

processor-and-memory units. Each such unit is a node in the hypercube, and has a unique k- 
bit label. 
Hamming distance 

 The processors are labelled such that the shortest path between any two processors is the 
Hamming distance (defined as the number of bit positions in which the two equal sized 
bit strings differ) between the processor labels. 

 Example Nodes 0101 and 1100 have a Hamming distance of 2. The shortest path between 
them has length 2. 

3. Array processors 
 Array processors belong to a class of parallel computers that are physically co-located, are 

very tightly coupled, and have a common system clock (but may not share memory and 
communicate by passing data using messages).
 Array processors and systolic arrays that perform tightly synchronized processing and data 

exchange in lock-step for applications such as DSP and image processing belong to this 
category.
 These applications usually involve a large number of iterations on the data. This class of 

parallel systems has a very niche market.
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 Flynn’s Taxonomy 
 

Flynn identified four processing modes, based on whether the processors execute the same or 
different instruction streams at the same time, and whether or not the processors processed the 
same (identical) data at the same time. 

 
 
 

 

SISD: Single Instruction Stream Single Data Stream (traditional) 
This mode corresponds to the conventional processing in the von Neumann paradigm with a 
single CPU, and a single memory unit connected by a system bus. 

 
SIMD: Single Instruction Stream Multiple Data Stream 
This mode corresponds to the processing by multiple homogenous processors which execute in 
lock-step on different data items. 

o scientific applications, applications on large arrays 
o vector processors, systolic arrays, Pentium/SSE, DSP chips 

MISD: Multiple Instruction Stream Single Data Stream 
This mode corresponds to the execution of different operations in parallel on the same data. This 
is a specialized mode of operation with limited but niche applications 
 E.g., visualization

MIMD: Multiple Instruction Stream Multiple Data Stream 
 In this mode, the various processors execute different code on different data. This is the 

mode of operation in distributed systems as well as in the vast majority of parallel systems.
 There is no common clock among the system processors. 

Eg. Sun Ultra servers, multicomputer PCs, and IBM SP machines
 

 Coupling, parallelism, concurrency, and granularity 

Coupling 
 

 The degree of coupling among a set of modules, whether hardware or software, is 
measured in terms of the interdependency and binding and/or homogeneity among the modules.
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1.5 Message-passing vs. Shared Memory 

 When the degree of coupling is high (low), the modules are said to be tightly (loosely) 
coupled.

 SIMD and MISD architectures generally tend to be tightly coupled because of the 
common clocking of the shared instruction stream or the shared data stream.

 Various MIMD architectures in terms of coupling:
 

 Tightly coupled multiprocessors (with UMA shared memory). These may be either 
switch-based

 Tightly coupled multiprocessors (with NUMA shared memory or that communicate by 
message passing).

 Loosely coupled multi computers (without shared memory) physically co-located. These 
may be bus-based

 and the processors may be heterogeneous
 Loosely coupled multi computers (without shared memory and without common clock) 

that are physically remote.

Parallelism or speedup of a program on a specific system 
 

 This is a measure of the relative speedup of a specific program, on a given machine.
 The speedup depends on the number of processors and the mapping of the code to the 

processors.
 It is expressed as the ratio of the time T(1) with a single processor, to the time T(n) with 

n processors.
 

Parallelism within a parallel/distributed program 
 This is an aggregate measure of the percentage of time that all the proces-sors are

executing CPU instructions productively, as opposed to waiting for communication (either via 
shared memory or message-passing) operations to complete. 
Concurrency of a program 

 
The parallelism/concurrency in a parallel/distributed program can be measured by the ratio of 
the number of local (non-communication and non-shared memory access) operations to the total 
number of operations, including the communication or shared memory access operations. 
Granularity of a program 

 The ratio of the amount of computation to the amount of communication within the 
parallel/distributed program is termed as granularity.

 Programs with fine-grained parallelism are best suited for tightly coupled systems. Eg. 
SIMD and MISD architectures

 

 Shared memory systems are those in which there is a (common) shared address space 
throughout the system.

 Communication among processors takes place via shared data variables, and control 
variables for synchronization among the processors.
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 Semaphores and monitors that were originally designed for shared memory uni 
processors and multiprocessors

 
 The abstraction called shared memory is sometimes provided to simulate a shared address 

space. For a distributed system, this abstraction is called distributed shared memory. 
Implementing this abstraction has a certain cost but it simplifies the task of the 
application programmer.

 The communication via message-passing can be simulated by communication via shared 
memory and vice-versa. Therefore, the two paradigms are equivalent.

 
 Emulating message-passing on a shared memory system (MP → SM) 

 Partition shared address space
 Send/Receive emulated by writing/reading from special mailbox per pair of processes
  A Pi–Pj message-passing can be emulated by a write by Pi to the mailbox and then a 

read by Pj from the mailbox.
  The write and read operations need to be controlled using synchronization primitives 

to inform the receiver/sender after the data has been sent/received.
 

 Emulating shared memory on a message-passing system (SM → MP) 
  This involves the use of “send” and “receive” operations for “write” and “read” 

operations.
 Model each shared object as a process
 Write to shared object emulated by sending message to owner process for the object
 Read from shared object emulated by sending query to owner of shared object
  In a MIMD message-passing multicomputer system, each “processor” may be a tightly 

coupled multiprocessor system with shared memory. Within the multiprocessor system, 
the processors communicate via shared memory. Between two computers, the 
communication is by message passing.

 Primitives for distributed communication 

 Blocking/non-blocking, synchronous/asynchronous primitives 
  A Send primitive has at least two parameters – the destination, and the buffer in the 

user space, containing the data to be sent.
  Similarly, a Receive primitive has at least two parameters – the source from which the 

data is to be received (this could be a wildcard), and the user buffer into which the data is 
to be received.

  There are two ways of sending data when the Send primitive is invoked – the buffered 
option and the unbuffered option. The buffered option which is the standard option copies 
the data from the user buffer to the kernel buffer. The data later gets copied from the 
kernel buffer onto the network. In the unbuffered option, the data gets copied directly 
from the user buffer onto the network.

  For the Receive primitive, the buffered option is usually required because the data may 
already have arrived when the primitive is invoked, and needs a storage place in the 
kernel.
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Synchronous primitive(send/receive) 
 Handshake between sender and receiver
 Send completes when Receive completes
 Receive completes when data copied into buffer

 
Asynchronous primitive (send) 

  A Send primitive is said to be asynchronous if control returns back to the invoking 
process after the data item to be sent has been copied out of the user-specified buffer.

 
Blocking primitive (send/receive) 

  A primitive is blocking if control returns to the invoking process after the processing 
for the primitive (whether in synchronous or asynchronous mode) completes.

 
Nonblocking primitive (send/receive) 

  A primitive is non-blocking if control returns back to the invoking process 
immediately after invocation, even though the operation has not completed.

 Send: even before data copied out of user buffer
 Receive: even before data may have arrived from sender

 
A non-blocking send primitive. When the Wait call returns, at least one of its parameters is 
posted. 

 
 

Send(X, destination, handlek) // handlek is a return parameter 

 
Wait(handle1, handle2, …, handlek, …, handlem) 

 
// Wait always blocks 

 
 

Return parameter returns a system-generated handle 
 Use later to check for status of completion of call
 Keep checking (loop or periodically) if handle has been posted
 Issue Wait(handle1, handle2, : : :) call with list of handles
 Wait call blocks until one of the stipulated handles is posted
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Blocking/nonblocking; Synchronous/asynchronous; send/receive primities 

 Processor synchrony 
 

 Processor synchrony indicates that all the processors execute in lock-step with their 
clocks synchronized.

 It is used to ensure that no processor begins executing the next step of code until all the 
processors have completed executing the previous steps of code assigned to each of the 
processors.

 
 Libraries and standards 
 

  The message-passing interface (MPI) library and the PVM (parallel virtual machine) 
library

  Commercial software is often written using the remote procedure calls (RPC) 
mechanism for example, Sun RPC, and distributed computing environ-ment (DCE) RPC

  “Messaging” and “streaming” are two other mechanisms for communication, (RMI) 
and remote object invocation (ROI)
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1.7 Synchronous versus asynchronous executions 

  CORBA (common object request broker architecture) and DCOM (distributed 
component object model) are two other standardized architectures with their own set of 
primitives

 

 

An asynchronous execution is an execution in which 
  There is no processor synchrony and there is no bound on the drift rate 

of processor clocks,
  Message delays (transmission + propagation times) are finite but 

unbounded, and
  There is no upper bound on the time taken by a process to execute a 

step.
 

An example of an asynchronous execution in a message-passing system. A timing diagram is 
used to illustrate the execution 

An example asynchronous execution with four processes P0 to P3 is shown in Figure. The 
arrows denote the messages; the tail and head of an arrow mark the send and receive event for 
that message, denoted by a circle and vertical line, respectively. Non-communication events, also 
termed as internal events, are shown by shaded circles. 

 
A synchronous execution is an execution in which 

(i) processors are synchronized and the clock drift rate between any two processors is 
bounded, 

(ii) message delivery (transmission + delivery) times are such that they occur in one logical 
step or round, and 

(iii) there is a known upper bound on the time taken by a process to execute a step. 
 

There is a hurdle to having a truly synchronous execution 

 It is practically difficult to build a completely synchronous system, and have the 
messages delivered within a bounded time.
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 Therefore, this synchrony has to be simulated under the covers, and will inevitably 
involve delaying or blocking some processes for some time durations.

 Thus, synchronous execution is an abstraction that needs to be provided to the programs.
 When implementing this abstraction, observe that the fewer the steps or 

“synchronizations” of the processors, the lower the delays and costs.
 

Virtual Synchrony 
 If processors are allowed to have an asynchronous execution for a period of time and then 

they synchronize, then the granularity of the synchrony is coarse. This is really a virtually 
synchronous execution, and the abstraction is sometimes termed as virtual synchrony.

 Ideally, many programs want the processes to execute a series of instructions in rounds 
(also termed as steps or phases) asynchronously, with the requirement that after each 
round/step/phase, all the processes should be synchronized and all messages sent should 
be delivered.

 This is the commonly understood notion of a synchronous execution. Within each 
round/phase/step, there may be a finite and bounded number of sequential sub-rounds (or 
sub-phases or sub-steps) that processes execute. Each sub-round is assumed to send at 
most one message per process; hence the message(s) sent will reach in a single message 
hop.

 
An example of a synchronous execution in a message-passing system. All the messages sent in a 
round are received within that same round. 

 
In this system, there are four nodes P0 to P3. In each round, process Pi sends a message to P i+1 

mod 4 and P i−1 mod 4 and calculates some application-specific function on the received values. 
 

Synchronous execution in a message-passing system 
In any round/step/phase: (send j internal) (receive j internal) 
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Difficult to build a truly synchronous system; can simulate this abstraction 
Virtual synchrony: 

 async execution, processes synchronize as per application requirement; 
 execute in rounds/steps 

Emulations: 
 Async program on sync system: trivial (A is special case of S)
 Sync program on async system: tool called synchronizer

 

System Emulations 
 

 The shared memory system could be emulated by a message-passing system, and vice- 
versa

 If system A can be emulated by system B, denoted A/B, and if a problem is not solvable 
in B, then it is also not solvable in A. Likewise, if a problem is solvable in A, it is also solvable 
in B. Hence, in a sense, all four classes are equivalent in terms of “computability” – what can 
and cannot be computed – in failure-free systems.
Emulations among the principal system classes in a failure-free system. 

 

 

Assumption: failure-free system 
System A emulated by system B: 

 If not solvable in B, not solvable in A

 Sync vs async executions 
Async execution 
 No processor synchrony, no bound on drift rate of clocks 
 Message delays nite but unbounded 
 No bound on time for a step at a process 
Sync execution 
 Processors are synchronized; clock drift rate bounded 
 Message delivery occurs in one logical step/round 
 Known upper bound on time to execute a step at a process 
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1.8 Design issues and challenges 

Distributed systems challenges from a system perspective 
Algorithmic challenges in distributed computing 
Applications of distributed computing and newer challenges 

1.8.1 Distributed systems challenges from a system perspective 

 If solvable in A, solvable in B
 
 

 

 

The categorization of design issues and challengesm as (i) having a greater component related to 
systems design and operating systems design, or (ii) having a greater component related to 
algorithm design, or (iii) emerging from recent technology advances and/or driven by new 
applications. 

 

 

The following functions must be addressed when designing and building a distributed system: 
 

Communication mechanisms: E.g., Remote Procedure Call (RPC), remote object invocation 
(ROI), message-oriented vs. stream-oriented communication 
Processes: Code migration, process/thread management at clients and servers, design of 
software and mobile agents 
Naming: Easy to use identifiers needed to locate resources and processes transparently and 
scalable. 
Synchronization 
Mechanisms for synchronization or coordination among the processes are essential. Mutual 
exclusion is the classical example of synchronization 
Data storage and access 

  Schemes for data storage, search, and lookup should be  fast and scalable across 
network

 Revisit file system design
Consistency and replication 

 Replication for fast access, scalability, avoid bottlenecks
 Require consistency management among replicas
 Fault-tolerance: correct and efficient operation despite link, node, process failures

 
Distributed systems security 

  Secure channels, access control, key management (key generation and key 
distribution), authorization, secure group management

 Scalability and modularity of algorithms, data, services Some experimental systems: 
Globe, Globus, Grid
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1.8.2 Algorithmic challenges in distributed computing 

API for communications, services: ease of use 
Transparency: hiding implementation policies from user 

  Access: hide di erences in data rep across systems, provide uniform operations to 
access resources

 Location: locations of resources are transparent
 Migration: relocate resources without renaming
 Relocation: relocate resources as they are being accessed
 Replication: hide replication from the users
 Concurrency: mask the use of shared resources
 Failure: reliable and fault-tolerant operation

Scalability and modularity 
  Various techniques such as replication, caching and cache management, and 

asynchronous processing help to achieve scalability.
 

 

Useful execution models and frameworks: to reason with and design correct distributed 
programs 

 Interleaving model
 Partial order model
 Input/Output automata
 Temporal Logic of Actions

Dynamic distributed graph algorithms and routing algorithms 
 System topology: distributed graph, with only local neighborhood knowledge
  Graph algorithms: building blocks for group communication, data dissemination, 

object location
 Algorithms need to deal with dynamically changing graphs
 Algorithm e ciency: also impacts resource consumption, latency, tra c, congestion

Time and global state 
  The processes in the system are spread across three-dimensional physical space. 

Another dimension, time, has to be superimposed uniformly across space.
  The challenges pertain to providing accurate physical time, and to providing a variant 

of time, called logical time
 Logical time captures inter-process dependencies and tracks relative time progression
 Global state observation: inherent distributed nature of system
  Concurrency measures: concurrency depends on program logic, execution speeds 

within logical threads, communication speeds
Synchronization/coordination mechanisms 

 

Some examples of problems requiring synchronization: 
 Physical clock synchronization: hardware drift needs correction
 Leader election: select a distinguished process, due to inherent symmetry
 Mutual exclusion: coordinate access to critical resources



   DISTRIBUTED SYSTEMS 
 

  Distributed deadlock detection and resolution: need to observe global state; avoid 
duplicate detection, unnecessary aborts

  Termination detection: global state of quiescence; no CPU processing and no in-transit 
messages

 Garbage collection: Reclaim objects no longer pointed to by any process
Group communication, multicast, and ordered message delivery 

 A group is a collection of processes that share a common context and collab-orate on a 
common task within an application domain.

 Multiple joins, leaves, fails
 Concurrent sends: semantics of delivery order

Monitoring distributed events and predicates 
 Predicate: condition on global system state
  An important paradigm for monitoring distributed events is that of event streaming, 

wherein streams of relevant events reported from different processes are examined 
collectively to detect predicates.

Distributed program design and verification tools 
  Methodically designed and verifiably correct programs can greatly reduce the 

overhead of software design, debugging, and engineering.
Debugging distributed programs 

  Debugging sequential programs is hard; debugging distributed programs is that much 
harder because of the concurrency in actions

 
Data replication, consistency models, and caching 

 Fast, scalable access;
 coordinate replica updates;
 optimize replica placement

World Wide Web design: caching, searching, scheduling 
 Global scale distributed system; end-users
 Read-intensive; prefetching over caching
 Object search and navigation are resource-intensive
 User-perceived latency

Distributed shared memory abstraction 
 Wait-free algorithm design: process completes execution, irrespective of

o actions of other processes, i.e., n - 1 fault-resilience 
 Mutual exclusion
  Bakery algorithm, semaphores, based on atomic hardware primitives, fast 

algorithms when contention-free access
 Register constructions
 Revisit assumptions about memory access

Consistency models: 
  For multiple copies of a variable/object, varying degrees of consistency among the 

replicas can be allowed.
 These represent a trade-off of coherence versus cost of implementation.



   DISTRIBUTED SYSTEMS 
 

1.8.3 Applications of distributed computing and newer challenges 

 Weaker models than strict consistency of uniprocessors
Reliable and fault-tolerant distributed systems 
Consensus algorithms: processes reach agreement in spite of faults (under various fault models) 

 
Replication and replica management 

 

Replication (as in having backup servers) is a classical method of providing fault-tolerance. The 
triple modular redundancy (TMR) technique has long been used in software as well as hardware 
installations. 

 Voting and quorum systems
 Distributed databases, commit: ACID properties
  Self-stabilizing systems: "illegal" system state changes to "legal" state; requires built- 

in redundancy
  Check pointing and recovery algorithms: roll back and restart from earlier "saved" 

state
 Failure detectors:
  Difficult to distinguish a "slow" process/message from a failed process/ never sent 

message algorithms that "suspect" a process as having failed and converge on a 
determination of its up/down status

 
Load balancing: to reduce latency, increase throughput, dynamically. E.g., server farms 

 Computation migration: relocate processes to redistribute workload
 Data migration: move data, based on access patterns
 Distributed scheduling: across processors

Real-time scheduling: difficult without global view, network delays make task harder 
 

Performance modeling and analysis: Network latency to access resources must be reduced 
 Metrics: theoretical measures for algorithms, practical measures for systems
 Measurement methodologies and tools

 

 

Mobile systems 
  Wireless communication: unit disk model; broadcast medium (MAC), power 

management etc.
  CS perspective: routing, location management, channel allocation, localization and 

position estimation, mobility management
 Base station model (cellular model)
 Ad-hoc network model (rich in distributed graph theory problems)

Sensor networks: Processor with electro-mechanical interface Ubiquitous or pervasive 
computing 

 Processors embedded in and seamlessly pervading environment
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1.9 A Model of Distributed Computations 

1.10 A Model of Distributed Executions 

  Wireless sensor and actuator mechanisms; self-organizing; network-centric, resource- 
constrained

 E.g., intelligent home, smart workplace
 Peer-to-peer computing
  No hierarchy; symmetric role; self-organizing; efficient object storage and lookup; 

scalable; dynamic reconfiguration
 all processors are equal and play a symmetric role in the computation.

Publish/subscribe, content distribution 
 Filtering information to extract that of interest

Distributed agents 
  Processes that move and cooperate to perform specific tasks; coordination, controlling 

mobility, software design and interfaces
Distributed data mining 

 Extract patterns/trends of interest
 Data not available in a single repository

Grid computing 
 Grid of shared computing resources; use idle CPU cycles
 Issues: scheduling, QOS guarantees, security of machines and jobs

Security 
 Confidentiality, authentication, availability in a distributed setting
 Manage wireless, peer-to-peer, grid environments
 Issues: e.g., Lack of trust, broadcast media, resource-constrained, lack of structure

 
 

 A Distributed Program 
 A distributed program is composed of a set of n asynchronous processes, p1, p2, ..., pi , ..., pn. 
 The processes do not share a global memory and communicate solely by passing messages. 
 The processes do not share a global clock that is instantaneously accessible to these processes. 
 Process execution and message transfer are asynchronous. 
 Withoutlossofgenerality, we assumethat each processisrunning ona different processor. 
 Let Cij denote the channel from process pi to process pj and let mij denote a message sent by 

pi to pj . 
 The message transmission delay is finite and unpredictable. 

 

 The execution of a process consists of a sequential execution of its actions. 
 The actions are atomic and the actions of a process are modeled as three types of 

events, namely, internal events, message send events, and message receive events. 
i  Let ex denote the x th event at process pi . For a message m, let send (m) and rec(m) 
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denoteitssendandreceiveevents, respectively. 
 The occurrence of events changes the states of respective processes and channels. An 

internal event changes the state of the process at which it occurs. A send event 
changes the state of the process that sends the message and the state of the channel on 
which the message is sent. A receive event changes the state of the process that receives 
the message and the state of the channel on which the message is received. The send 
and the receive events signify the flow of information between processes and establish 
causal dependency from the sender process to the receiver process. 

 A relation →msg that captures the causal dependency due to message exchange, is 
defined as follows. For every message m that is exchanged between two processes, we 
have send (m) →msg rec (m). 

 Relation →msg defines causal dependencies between the pairs of corresponding send 
and receive events. 

 The evolution of a distributed execution is depicted by a space-time diagram. 
 A horizontal line represents the progress of the process; a dot indicates an event; a slant 

arrow indicates a message transfer. 
 Since we assume that an event execution is atomic (hence, indivisible and 

instantaneous), it is justified to denote it as a dot on a process line. 
 In the Figure, for process p1, the second event is a message send event, the third event is 

an internal event, and the fourth event is a message receive event. 
 

Figure : The space-time diagram of a distributed execution. 

 

Causal Precedence Relation 

 The execution of a distributed application results in a set of distributed events produced by 
the processes. 

 Let H=ৣi hi denote the set of events executed in a distributed computation. 
 Define a binary relation → on the set H as follows that expresses causal dependencies 

between events in the distributed execution. 
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The causal precedence relation induces an irreflexive partial order on the events of a distributed 
computation that is denoted as H=(H, →). 

 Note that the relation → is nothing but Lamport’s “happens before” relation. 
 For any two events ei and ej , if ei → ej , then event ej is directly or transitively dependent 

on event ei . (Graphically, it means that there exists a path consisting of message arrows and 
process-line segments (along increasing time) in the space-time diagram that starts at ei and 
ends at ej.) 

  
 The relation → denotes flow of information in a distributed computation and ei → ej 

dictates that all the information available at ei is potentially accessible at ej . 
 For example, i2n Figure 2.1, event e2

6 has the knowledge of all other events shown in the 
figure. 

 

Note the following two rules: 

 
Concurrent Events 

Logical vs. Physical Concurrency 

 In a distributed computation, two events are logically concurrent if and only if they do not 
causally affect each other. 

 Physical concurrency, on the other hand, has a connotation that the events occur at the same 
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1.11 Models of communication networks 

1.12 Global State of a Distributed System 

instant in physical time. 
 Two or more events may be logically concurrent even though they do not occur at the same 

instant in physical time. 
 However, if processor speed and message delays would have been different, the 

execution of these events could have very well coincided in physical time. 
 Whether a set of logically concurrent events coincide in the physical time or not, does not 

change the outcome of the computation. 
 Therefore, eventhougha set oflogicallyconcurrent eventsmaynothave occurred at the same 

instant in physical time, we can assume that these events occured at the same instant in 
physical time. 

 

 There are several models of the service provided by communication networks, namely, FIFO, 
Non-FIFO, and causal ordering. 

 In the FIFO model, each channel acts as a first-in first-out message queue and thus, message 
ordering is preserved by achannel. 

 In the non-FIFO model, a channel acts like a set in which the sender process adds messages 
and the receiver process removes messages from it in a random order. 

 The“causalordering” modelisbased on Lamport’s “happens before” relation. 
 A system that supports the causal ordering model satisfies the following property: 

CO: For any two messages mij and mkj ,if send (mij )→send (mkj ), then rec (mij ) → rec (mkj ). 
 This property ensures that causally related messages destined to the same destination are 

delivered in an order that is consistent with their causality relation. 
 Causally ordered delivery of messages implies FIFO message delivery. (Note that CO 

 FIFO  Non-FIFO.) 
 Causal ordering model considerably simplifies the design of distributed algorithms 

because it provides a built-in synchronization. 

“The global state of a distributed system is a collection of the local states of its components, 
namely, the processes and the communication channels.” 

 The state of a process is defined by the contents of processor registers, stacks, local 
memory, etc. and depends on the local context of the distributed application. 

 The state of channel is given by the set of messages in transit in the channel. 
 The occurrence of events changes the states of respective processes and channels. 
 An internal event changes the state of the process at which it occurs. 
 A send event changes the state of the process that sends the message and the state of the 

channel on which the message is sent. 
 A receive event changes the state of the process that or receives the message and the state 

of the channel on which the message is received. 
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A Consistent Global State 

 Even if the state of all the components is not recorded at the same instant, such a state will be 
meaningfulprovidedeverymessagethatisrecordedas received is also recorded as sent. 

 Basic idea is that a state should not violate causality – an effect should not be present 
without its cause. Amessagecannotbe receivedifitwasnotsent. 

 Such states are called consistent global states and are meaningful global states. 

An Example 
Consider the distributed execution of Figure 
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1.13 Cuts of a Distributed Computation 

 

 
 

 

 

“In the space-time diagram of a distributed computation, a cut is a zigzag line joining one arbitrary 
point on each process line.” 

 A cut slices the space-time diagram, and thus the set of events in the distributed 
computation, into a PAST and a FUTURE. 

 The PAST contains all the events to the left of the cut and the FUTURE contains all the 
events to the right of the cut. 

 For a cut C , let PAST(C ) and FUTURE(C ) denote the set of events in the PAST and 
FUTURE of C , respectively. 

 Every cut corresponds to a global state and every global state can be graphically 
represented as a cut in the computation’s space-time diagram. 

 Cuts in a space-time diagram provide a powerful graphical aid in representing and 
reasoning about global states of a computation. 

Figure: Illustration of cuts in a distributed execution. 

 In a consistent cut, every message received in the PAST of the cut was sent in the PAST of 
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1.14 Past and Future Cones of an Event 

that cut. (In Figure, cut C2 is a consistent cut.) 
 All messages that cross the cut from the PAST to the FUTURE are in transit in the 

corresponding consistent global state. 
 A cut is inconsistent if a message crosses the cut from the FUTURE to the PAST. (In Figure, 

cut C1 is an inconsistent cut.) 

 

Past Cone of an Event 

 An event ej could have been affected only by all events ei such that ei → ej . 
 In this situtaion, all the information available at ei could be made accessible at ej . 
 All such events ei belong to the past of ej . 

Let Past(ej ) denote all events in the past of ej in a computation (H, →). Then, 

Past(ej ) = {ei |∀ei H, ei → ej }. 
 

Figure: Illustration of past and future cones. 

 
 Let Pasti (ej ) be the set of all those events of Past(ej ) that are on process pi .
 Pasti (ej ) is a totally ordered set, ordered by the relation →i , whose maximal element is 

denoted by max(Pasti (ej )).
 max(Pasti(ej)) is the latest event at process pi that affected event ej

 

Future cone of an Event 
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1.15 Models of Process Communications 

1.16 Logical Time 

 

 
 
 

 

 There are two of basic models process communications – synchronous and asynchronous.
 The synchronous communication model is a blocking type where on a message send, the 

sender process blocks until the message has been received by the receiver process. The sender 
process resumes execution only after it learns that the receiver process has accepted the 
message.

 Thus, the sender and the receiver processes must synchronize to exchange a message. On 
the other hand, asynchronous communication model is a non-blocking type where the sender 
and the receiver do not synchronize to exchange a message.

 After having sent a message, the sender process does not wait for the message to be delivered 
to the receiver process. The message is buffered by the system and is delivered to the receiver 
process when it is ready to accept the message. Neither of the communication models is 
superior to the other.

 Asynchronous communication provides higher parallelism because the sender process 
can execute while the message is in transit to the receiver.

 However, A buffer overflow may occur if a process sends a large number of messages in 
a burst to another process. Thus, an implementation of asynchronous communication 
requires more complex buffer management.

 In addition, due to higher degree of parallelism and non-determinism, it is much more 
difficult to design, verify, and implement distributed algorithms for asynchronous 
communications.

 Synchronous communication is simpler to handle and implement.
 However, due to frequent blocking, it is likely to have poor performance and is likely to be 

more prone to deadlocks.
 

Introduction 
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1.17 A Framework for a System of Logical Clocks 

 The concept of causality between events is fundamental to the design and analysis of parallel 
and distributed computing and operating systems.

 Usually causality is tracked using physical time.
 In distributed systems, it is not possible to have a global physical time.
 As asynchronous distributed computations make progress in spurts, the logical time is 

sufficient to capture the fundamental monotonicity property associated with causality in 
distributed systems.

 This chapter discusses three ways to implement logical time - scalar time, vector time, and 
matrix time.

 Causalityamongevents in adistributed system is apowerful concept in reasoning, analyzing, 
and drawing inferences about a computation.

 The knowledge of the causal precedence relation among the events of processes helps 
solve a variety of problems in distributed systems, such as distributed algorithms design, 
tracking of dependent events, knowledge about the progress of a computation, and 
concurrencymeasures.

 

 Definition 
 A system of logical clocks consists of a time domain T and a logical clock C . 

Elements of T form a partially ordered set over a relation <. 
 Relation < is called the happened before or causal precedence. Intuitively, this 

relation is analogous to the earlier than relation provided by the physical time. 
 The logical clock C is a function that maps an event e in a distributed system to an 

element in the time domain T, denoted as C(e) and called the timestamp of e, and is 
defined as follows: 

C : H → T 
such that the following property is satisfied: 

for two events ei and ej , ei → ej =⇒ C(ei ) < C(ej ). 
This monotonicity property is called the clock consistency condition. When T and C 
satisfy the following condition, 

 for two events ei and ej , ei → ej ⇔ C(ei ) < C(ej ) 
the system of clocks is said to be strongly consistent. 

 Implementing Logical Clocks 
 Implementation of logical clocks requires addressing two issues: data structures local to 

every process to represent logical time and a protocol to update the data structures to ensure 
the consistency condition. 

 Each process pi maintains data structures that allow it the following two capabilities: 
A local logical clock, denoted by lci , that helps process pi measure its own progress. 
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R1: This rule governs how the local logical clock is updated by a process when it executes an 
event. 
R2: This rule governs how a process updates its global logical clock to update its view of the 
global time and global progress. 

1. Ci := max (Ci , Cmsg ) 
2. Execute R1. 
3. Deliver the message. 

R1: Before executing an event (send, receive, or internal), process pi executes the following: 
Ci := Ci + d (d > 0) In general, every time R1 is executed, d can have a different value; 
however, typically d is kept at 1. 
R2: Each message piggybacks the clock value of its sender at sending time. When a process pi 
receives a message with timestamp Cmsg , it executes the following actions: 

 

 
 The protocol ensures that a process’s logical clock, and thus its view of the global time, is 

managed consistently. The protocol consists of the following two rules: 

 Systems oflogical clocks differ in their representation of logicaltime and also in the protocol 
to update the logical clocks. 

 
 The scalar time representation was proposed by Lamport in 1978 [9] as an attempt to 

totally order events in a distributed system. Time domain in this representation is the set 
of non-negative integers. 

 The logical local clock of a process pi and its local view of the global time are squashed into 
one integer variable Ci . 

 Rules R1 and R2 to update the clocks are as follows: 

 Figure shows evolution of scalar time. 
Evolution of scalar time: 
Figure : The space-time diagram of a distributed execution. 

 
 
 
 
 
 

Basic Properties 

Consistency Property 
Scalar clocks satisfy the monotonicity and hence the consistency property: for two events ei and ej , 
ei → ej =⇒ C(ei ) < C(ej ). 
Total Ordering 

1.18 Scalar Time 

A logical global clock, denoted by gci , that is a representation of process pi ’s local view of 
the logical global time. Typically, lci is a part of gci . 
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1.19 Vector Time 

 Scalar clocks can be used to totally order events in a distributed system. 
 The main problem in totally ordering events is that two or more events at different processes 

may have identical timestamp. 
 For example in Figure, the third event of process P1 and the second event of process P2 have 

identical scalar timestamp. 
 Atie-breakingmechanismisneededtoordersuch events. Atieisbrokenas follows: 

 Process identifiers are linearly ordered and tie among events with identical scalar 
timestamp is broken on the basis of their process identifiers. 

 The lower the process identifier in the ranking, the higher the priority. 
 The timestamp of an event is denoted by a tuple (t, i) where t is its time of occurrence and i 

is the identity of the process where it occurred. 

Event counting 
 If the increment value d is always 1, the scalar time has the following interesting 

property: if event e has a timestamp h, then h-1 represents the minimum logical duration, 
counted in units of events, required before producing the event e; 

 We call it the height of the event e. 
 In otherwords, h-1 events havebeenproducedsequentiallybeforetheevent e 

regardless of the processes that produced these events. 
For example, in Figure, five events precede event b on the longest causal path ending at b. 

No Strong Consistency 
 

 For example, in Figure, the third event of process P1 has smaller scalar timestamp than the 
third event of process P2. However, the former did not happen before the latter. 

 The reason that scalar clocks are not strongly consistent is that the logical local clock and 
logical global clock of a process are squashed into one, resulting in the loss causal 
dependency information among events at different processes. 

 For example, in Figure, when process P2 receives the first message from process P1, it 
updates its clock to 3, forgetting that the timestamp of the latest event at P1 on which it 
depends is 2. 

 

 The system of vector clocks was developed independently by Fidge, Mattern and Schmuck. 
 In the system of vector clocks, the time domain is represented by a set of 

n-dimensional non-negative integer vectors. 
 Each process pi maintains a vector vti [1..n], where vti [i ] is the local logical clock of pi and 
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R1: Before executing an event, process pi updatesitslocallogicaltimeas follows: 
vti [i ] := vti [i ] + d (d > 0) 
R2: Each message m is piggybacked with the vector clock vt of the sender process at sending 
time. On the receipt of such a message (m,vt), process pi executes the following sequence of 
actions: 

describes the logical time progress at process pi . 
vti [j] represents process pi ’s latest knowledge of process pj local time. 
If vti [j]=x, then process pi knows that local time at process pj has progressed till x . 
The entire vector vti constitutes pi’s view of the global logical time and is used to timestamp 
events. 

 Process pi uses the following two rules R1 and R2 to update its clock: 

1. Update its global logical time as follows: 
1 ≤ k ≤ n : vti [k ] := max (vti [k ], vt[k ]) 

2. Execute R1. 
3. Deliver the message m. 

The timestamp of an event is the value of the vector clock of its process when the event is executed. 
Figure shows an example of vector clocks progress with the increment value d=1. 
Initially, a vector clock is [0,0,0, ........ , 0]. 
An Example of Vector Clocks 

 

Comparing Vector Timestamps 
The following relations are defined to compare two vector timestamps, vh 
and vk : 

 

 
If the process at which an event occurred is known, the test to compare two timestamps can be 
simplified as follows: If events x and y respectively occurred at processes pi and pj and are 
assigned timestamps vh and vk, respectively, then 
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Basic Properties of Vector Time 
Isomorphism 

 If events in a distributed system are time stamped using a system of vector clocks, we have 
the following property. 

 If two events x and y have timestamps vh and vk, respectively, then 
 

x → y ⇔ vh < vk x ǁ y⇔ vh ǁ vk. 

 Thus, there is an isomorphism between the set of partially ordered events produced by a 
distributed computation and their vector timestamps 

Strong Consistency 
 The system of vector clocks is strongly consistent; thus, by examining the vector timestamp 

of twoevents, we can determineiftheeventsare causally related. 
 However, Charron-Bost showed that the dimension of vector clocks cannot be less than 

n, the total number of processes in the distributed computation, for this property to hold. 
Event Counting 

 If d=1 (in rule R1), then the i th component of vector clock at process pi , vti [i ], denotes the 
number of events that have occurred at pi until that instant. 

 So, if an event e has timestamp vh, 
vh[j] denotes the number of events executed by process pj that causally precede e. 
Clearly, vh[j] – 1 represents the total number of events that causally precede e in the 
distributed computation. 

Applications 

 Distributed debugging, 
 Implementations of causal ordering, 
 Communication and causal distributed shared memory, 
 Establishment of global breakpoints 
 Determining the consistency of checkpoints in optimistic recovery 

Size of vector clocks 
A linear extension of a partial order E is a linear ordering of E that is consistent with the partial 
order, i.e., if two events are ordered in the partial order, they are also ordered in the linear order. 
A linear extension can be viewed as projecting all the events from the different processes on a 
single time axis. However, the linear order will necessarily introduce ordering between each pair 
of events, and some of these orderings are not in the partial order. 
Now consider an execution on processes P1 and P2 such that each sends a message to the other 
before receiving the other’s message. The two send events are concurrent, as are the two receive 
events. To determine the causality between the send events or between the receive events, it is not 
sufficient to use a single integer; a vector clock of size n = 2 is necessary. This execution exhibits 
the graphical property called a crown, wherein there are some messages m0 mn−1 such that 
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Send mi < Receive mi+1 mod n−1 for all i from 0 to n − 1. A crown of n messages has dimension 
n 

Dimension of a execution For n = 4 processes, the dimension is 2. 

 
Motivation 
In centralized systems, there is only single clock. A process gets the time by simply issuing a system 
call to the kernel. In distributed systems, there is no global clock or common memory. Each 
processor has its own internal clock and its own notion of time. These clocks can easily drift 
seconds per day, accumulating significant errors over time. Also, because different clocks tick at 
different rates, they may not remain always synchronized although they might be synchronized 
when they start. This clearly poses serious problems to applications that depend on a 
synchronized notion of time. 
For most applications and algorithms that run in a distributed system, we need to know time in 
one or more of the following contexts: 

 The time of the day at which an event happened on a specific machine in the network. 
 The time interval between two events that happened on different machines in the 

network. 
 The relative ordering of events that happened on different machines in the network. 

Unless the clocks in each machine have a common notion of time, time-based queries cannot 
be answered. Clock synchronization has a significant effect on many problems like secure 
systems, fault diagnosis and recovery, scheduled operations, database systems, and real- 
world clock values. 
 Clock synchronization is the process of ensuring that physically distributed processors 

have a common notion of time. 
 Due to different clocks rates, the clocks at various sites may diverge with time and 

periodically a clock synchronization must be performed to correct this clock skew in 
distributed systems. 

 Clocks are synchronized to an accurate real-time standard like UTC (Universal 
Coordinated Time). 

Clocks that must not only be synchronized with each other but also have to adhere to physical time 
are termed physical clocks. 

1.20 Physical Clock Synchronization: NTP 
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Clock Inaccuracies 
Physical clocks are synchronized to an accurate real-time standard like UTC (Universal 
Coordinated Time). 
However, duetotheclockinaccuracydiscussedabove, a timer(clock) is said to be working within its 
specification if (where constant ρ is the maximum skew rate specified by the manufacturer.) 

 

 
Figure illustrates the behavior of fast, slow, andperfect clockswith respect to UTC. 

Offset delay estimation method 
The Network Time Protocol (NTP) which is widely used for clock synchronizationonthe Internet 
usesthe Offset Delay Estimation method. 
The design of NTP involves a hierarchical tree of time servers. 

 The primary server at the root synchronizes with the UTC. 
 The next level contains secondary servers, which act as a backup to the primary 

server. 
 At the lowest level is the synchronization subnet which has the clients. 
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Clock offset and delay estimation: 
In practice, a source node cannot accurately estimate the local time on the target node due to varying 
message or network delays between the nodes. This protocol employs a common practice of 
performing several trials and chooses the trial with the minimum delay. 
Figure shows how NTP timestamps are numbered and exchanged between peers A and B. 
Let T1,T2,T3,T4 be the values of the four most recent timestamps as shown. Assume clocks A and B 
are stable and running at the same speed. 

Offset and delay estimation. 
 

 

Each NTP message includes the latest three timestamps T1, T2 and T3, while T4 is determined upon 
arrival. Thus, both peers A and B can independently calculate delay and offset using a single 
bidirectional message stream as shown in Figure. 
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QUESTIONS: 
 

1.  Define distributed system. Listout the characteristics of distributed systems. How 
to relate the computer system components in distributed environment. (1.1 & 1.2) 

2. Describe the motivations of implementing distributed systems. (1.3) 
3. Describe the parallel systems with examples. (1.4) 
4. Differentiate message passing and shared memory and how they emulate (1.5) 
5. Describe the primitives of distributed computing (1.6) 
6. Differentiate sync and async execution with example. (1.7) 
7. Explain the Design issues and challenges of distributed computing. (1.8) 
8. Discuss the model of distributed execution. (1.10) 
9. Explain global states with example. (1.12) 
10. What is cut and past, future cones of an event in distributed systems (1.13 &1.14) 
11. Explain Logical clocks with example.(1.16 &1.17) 
12. Discuss scalar time and its properties. (1.18) 
13. Discuss Vector time(1.19) 
14. Explain physical clock synchronization with example (1.20) 


